A simple mathematical model to predict Agri-chemical Losses in Agricultural Drainage Tiles

Robert Wells, Sunnie A. Aburime, Larry Geohring, Sam Kung, Rony Wallach and Tammo Steenhuis

CHEMICAL MOVEMENT

• knowledge limiting

 much faster than can be predicted with standard models

PESTICIDE LOSS IN TILE LINES

COLIFORM IN TILE WATER

Macropore flow

Funneled Finger Flow

Layered soil

Coarse layer

2()

Fingered Flow in Homogeneous Sand

AYER

Finger Flow in Homegenous sand

Finger Flow in Water Repellent Sand

Use simple mathematical model to predict high concentrations in tile line water shortly after application

CONCEPTUAL MODEL

PLUG FLOW CONVECTIVE DISPERSIVE

rain ↓↓ ↓↓ ↓↓

plow layer matrix withou preferential flow paths

PREFERENTIAL FLOW

PREFERENTIAL FLOW

SOLUTE FLOW MODEL assumptions

- travel time between reservoirs is short
- distribution zone and ground water are linear reservoirs
- not all land area between drains contributes water and solute to tile line

SOLUTE FLOW MODEL assumptions

three distinct periods

- period I: distribution layer fills up
- period II: water moves between reservoirs
- period III: rain has stopped and

no recharge

DISTRIBUTION ZONE BROMIDE + BLUE DYE PULSE

- bromide and blue dye added on day 1
- daily irrigation of 4 cm
- samples collected at
 60 cm depth

DISTRIBUTION ZONE BROMIDE + BLUE DYE PULSE

DISTRIBUTION ZONE Pesticide pulse

EXPERIMENTAL

- solute applied before irrigation is started
- irrigation applied at rate of 1 cm/hr
- solute concentration and tile outflow rate observed
- plot size is 0.1 ha
- soil is sandy loam with tight layer from 30-60 cm.

TILE OUTFLOW

Tile 3 - Atrazine

CONTRIBUTING AREA

tile outflow during summer is approximately 20% of amount applied. This is consistent with water table observations

CONCLUSIONS

- simple two reservoir model can simulate the high concentrations in tile outflow shortly after application
- during summer less than 20% of the area contributes to tile outflow
- recent experiments of Kung indicates that observed phenomena are not limited to NY

Refer to the following paper for further details.:

Steenhuis, T.S., M. Bodnar, L.D. Geohring, S-A.E. Aburime, and R. Wallach. 1997. A Simple Model for Predicting Solute Concentration in Agricultural Tile Lines Shortly After Application. Hydrology and Earth System Sciences 4:823-833.

