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Mathematical and computer-simulation models are widely used in Soil Physics and 
Hydrology for predicting water percolation and water-aided transport of solutes and 
contaminants through the unsaturated zone. However, discrepancies between model 
results and actual field measurements are commonly found in the literature. In spite of the 
many experimental findings, the preferential flow phenomena has not been adequately 
incorporated into simple mathematical models for predicting moisture and solute flow in 
the unsaturated zone. The major difficulty of modelling this transport phenomena is 
primarily due to characterising the flow-paths within the soil profile. The approach to 
predict water and solute transport is derived from the work of Richard’s who formulated 
a theory of water movement in unsaturated soils (Richards, 1931). Van der Molen (1956) 
combined aspects of Richards’ model with the theory of dispersive movement to predict 
desalinisation of land that had been inundated by seawater in the Netherlands. The 
resulting equation, the Convection-Dispersion equation (CDE), assumes that water and 
solutes follow an average path through the soil. Others (e.g., Parker and Van Genuchten, 
1984; Sposito and Jury, 1988 and Barry and Sposito, 1988), have improved the solute 
transport model by incorporating a stochastic description of soil heterogeneities (see 
Barry, 1993; and Barry and Li, 1994 for excellent reviews). However, these results are 
usually limited to cases of constant or uniform mean velocity as well as constant 
dispersion (Gee, Kincaid, Lenhard, & Simons, 1991). Transfer function models have 
received considerable field testing and have shown that scale-dependent dispersion is 
present in the field (Li, Barry, Hensley, & Bajracharya, 1994; Li, Barry, & Stone, 1994). 
The conclusion from these studies is that the Convection-Dispersion equation with a 
constant dispersion coefficient does not give as great as solute dispersion with depth than 
is observed (Gee, Kincaid, Lenhard, & Simons, 1991).  
 
Several more-recent models separate matrix flow from macropore flow. These dual-
porosity models (e.g., see Gerke and van Genuchten, 1993), typically write separate 
transport equations for each domain of flow (i.e., matrix and macropore). Mixing of 
water and solutes across the interface is permitted and described by transfer coefficients 
which are often functions of the pore-size.  
 
Steenhuis, Parlange, & Andreini, 1990 followed a similar conceptual framework and 
proposed a mathematical model that considers not two domains but any number of 
domains. Extensions and improvements to the model were later proposed by (Steenhuis, 
Nijssen, Stagnitti, & Parlange, 1991) and (Stagnitti, Steenhuis, Parlange, Nijssen, & 
Parlange, 1991). In any modelling attempt, characterisation of the soil profile is 
problematic. In the model proposed by Steenhuis and colleagues, preferential flow paths 
are simulated by taking piece-wise linear approximations of the hydraulic conductivity; 
resulting in two model parameters; N, the number of pore groups with mobile water and, 
νp, the transport velocity of each pore group. These parameters can be related to physical 
properties but they usually require calibration to a particular field or laboratory 
experiment. Unlike the usual modelling assumptions applied in the Convection-
Dispersion equation, the concentration of solutes in the percolating water is dependent on 



the varying rate of applied water and the time period between rainfall and chemical 
application. This is achieved by relating the solute flux to the water flux. Thus transient 
field conditions can be simulated. The model can be applied to both large-scale field 
experiments and small-scale laboratory experiments.  
 
Water and solutes may travel through a soil by any number of possible routes and at 
differing velocities. Thus the residence times of water-soluble contaminants in the vadose 
zone is highly variable. However, for the purposes of modelling, even though these paths 
may be highly distributed throughout the soil, they may be collected into groups of 
pathways or ‘capillary-bundles’ in which the moisture and solutes travel with 
approximately the same flux. These ‘capillary-bundles’ are also termed ‘pore-groups’. 
The total amount of moisture, θ (x,t) in the soil at time, t, and point, x, is the sum of all 
individual moisture contents for each capillary-bundle, p.  
 

 θ(x,t) = ∑
p=0

N

 θp(x,t) (1) 

 
where θp is the individual moisture content for the pth pore-group. The maximum 
amount of moisture that each group can hold and transmit is ∆Mp = Mp - Mp-1 where Mp 
and Mp-1 are various moisture contents representing upper and lower limiting values for 
the pth group and are a function of the size of pores in each group. When θp = ∆Mp, then 
all the pathways for the pth group are completely saturated with soil moisture. The soil is 
locally saturated when all flow paths in all groups are saturated, ie. θ(x,t) = θs and θp(x,t) 
= ∆Mp  for all p where θs is the saturated moisture content of the soil. The group’s 
moisture content, θp, is a function of the vertical percolation rate, qp, and the effects of 
precipitation, evapotranspiration and loss or gain of moisture from interactions and 
exchanges with other groups. Therefore, from continuity, the transport equation may be 
written as 
 
 

 
∂[θp(x,t)]

∂t  + 
∂[qp(x,t)]

∂x  = A (x,t) (2)
 p

 for   t ≥  0 ; x ≥  0  ; 0 ≤  θp ≤  ∆Mp ; p = 0 .. N. 
 
where Ap(x,t) is a source/sink term representing the effects of precipitation, 
evapotranspiration and mixing between other groups; t is time, and x is a distance with x 
= 0 being the soil surface; N is the number of mobile pore-groups. From consideration of 
Darcy’s law,   
 
 (x,t) =  k(θp) H(x,t);  for  p = 1 .. N  qp

 qo(x,t) =  0   for  p = 0 (3) 
and 
 0  ≤   θ   ≤   ∆ ;      q   p Mp o ≤   q   1 ≤   q  . . .  2 ≤   qN 
 



where, H(x,t) is the hydraulic gradient and k(θp) is the hydraulic conductivity. For 
moisture in the unsaturated zone, a unit gradient is assumed, i.e., H(x,t) = 1. This is a 
useful and accurate approximation when gravity is the main driving force and is 
appropriate for percolation in macropores (Parlange, Steenhuis, & Stagnitti, 1994). 
Therefore, after substitution  
 

 
∂θp

∂t  + υ  p
∂θp

∂x  = A          where     p υp  = 
dk(θp)

dθp   
 (4) 

 
where νp is the velocity of percolating moisture in the pth group. Note that for p = 0, νp = 
0. The solution of eq. (9), obtained by the method of characteristics (e.g., see Charbeneau 
& Street, 1979; Charbeneau, 1981; Charbeneau, 1984), is given by 
 
 x = υp t + x ,     (5) o
and 

 (x,t) = ∫   A  dt + θp
o

t

p θp(x ,0)   ;    x ≥  o υpt (6) 

 
where θp(xo,0) is an arbitrary function of xo when t = 0. Eq. (11) cannot be easily 
integrated because Ap is generally not a simple analytical expression. Therefore, a fixed 
time-step numerical solution for the moisture content θp was proposed. From eq. (15), in 
a small time interval,  ∆ t, moisture will travel a distance, ∆xp, given by  
 
 (x,t) = θ (x-θp p ∆xp, t-∆ t) + I (x,t);       p ∆xp = υp ∆ t (7) 
 
where Ip is the integral of Ap between (t - ∆ t) and t. Let ∆xp be a simple integer multiple 
γp of ∆x1, the distance travelled by moisture in the slowest moving group (p = 1), i.e., ∆xp 
= γp ∆x1 with γ1 =  1. Note that in the “smaller” time step (  ∆t / γp), the pth group moved a 
distance ∆x1. Therefore, define a grid of points in (x-t) space based on  ∆x1 and (∆t / γT ) 
where T = N + 1, is the label for the pore-group with the greatest flux. Then 
 
 x = i ∆x1 ;  i = 0, 1, 2 ..  L / ∆x1     and      t  =  j (∆t / γT ) ;   j = 0, 1, 2 .. (8) 
 
where L is the depth to groundwater. On this grid, only one parameter, either the spatial 
coordinate, ∆x1 or the time coordinate (∆t / γT ) needs to be specified.  
 
It is usually more convenient to fix the time rather than the distance and therefore the 
following equation for moisture transport results.  
 
 
                 θ  

p
(i,j) = θp

(i – δ p γp, j – 1) + Ip
(i,j)   

 where (9) 



   δ =
  
p

0 ; j mod γp ≠ 0

1 ; j mod γp = 0

  

 
 
Fig. 1. illustrates the operation of the model defined as by eq. (9). In this example, 
suppose N = 3 (i.e., there are three mobile pore-groups, p = 1, 2, and 3), one immobile 
pore group (p = 0) and one macropore group, (p = 4). The transport velocities for each 
pore group are summarised in Table 1. 
 
 
 

Table 1.  Pore velocities and transport coefficients for the example 
given in Fig. 1. 
 
  Pore Group  Transport  Pore 
Category Number CoefficientVelocity 
  (p)  (γp ) (cm/hr) 
Immobile 0 1 0 
Mobile 1 1 19.5 
Mobile 2 2 39.1 
Mobile 3 4 78.1 
Macropore 4 64 1250 

 
 
 
For this example, ∆t = 1 minute. Therefore, the “small” time step as defined by eq. (7) is 
(∆t/  γT) = 1/64 min, a little less than one second. The reason for maintaining a second 
“small” time step (∆t/  γT) in the model is to provide a uniform rate of mixing of water 
(and solutes) during ∆t. (The mechanism of mixing water and solutes for each time step 
will be described shortly). The spatial step, ∆x1 = 0.33 cm. This is the distance moisture 
(and solutes) will move in the first pore-group in one minute. After one minute, moisture 
(and solutes) in the second, third and fourth pore-groups would have travelled a distance 
of 2∆x1 (0.66 cm), 4∆x1 (1.32 cm) and 64∆x1 (21.3 cm), respectively. 
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Figure 1. Transport of water and solutes in the preferential flow model (see eq. 8). The time step is 
defined by eq. (2). The spatial coordinate x is directed downward and the small divisions represent 
the space step ∆x1 (see eq. 8). (Adapted from Nijssen, Steenhuis, Kluitenberg, Stagnitti, & 
Parlange, (1991) . 

 
 
Determining The Number Of Groups For A Soil 
 
The total number of pore-groups, the amount of water in each group and its flux cannot 
be individually measured by experiments and generally will have to be estimated or 
determined by calibration. Indeed, it is difficult to conceive of an experiment that could 
determine such groupings. However, we propose a simple but general method for 
selecting any number of pore-groups for a soil based on a piece-wise linear 
approximation of the hydraulic conductivity function as shown in Fig. 2.  
 
The derivation of the following equations is presented in Appendix A. The moisture 
content and conductivity for the pth pore is given by,   

 

 
  

Mp = θr + (θs – θr) (1 – n)
f(a+1) (N–p) (1 – f–a)

1 – f
p = 1 .. N – 1  (10) 

and 



 

 
 

Kp =
ks (1 – n)

n
fa (N–p) (f – f–a)

1 – f
p = 1 .. N – 1  (11) 

 
where, N is the number of pore groups with mobile water, a = 1 / (n - 1) is a property of 
the soil and n is the reciprocal exponent in the power law of the hydraulic conductivity 
function which depends on soil type (Brooks and Corey, 1964)  given by  

 

 

 

k(θ) = k s
θ(x,t) – θr

θs – θr

1/n

 (12) 
 

where  ks  is the saturated hydraulic conductivity, θs  is the moisture content at saturation. 
Note, equations (10) and (11) are valid for p = 1 .. N - 1.  For p = N, we have 
 
 

 MN =  θs  and  KN =  ks (13) 
and for p = 0, we have 

 

  =  θr  +   ( θ  −  Mo s θr)   (1 - n)   f(a+1)(N−1)
    and  Ko = 0 (14) 

 
 
Therefore, the velocity for each pore-group can be written as  

  
  =   υp ks f

(p−N) / [  n ( θs −  θr)  ]  ;     p =  1 .. N (15) 
and  

 γp =  υ  / p υ1 =  fp−1   ;     γp  ≤   L/ ∆x1 (16) 
 

 
Note, f is an integer greater than one (e.g., 2, 3, etc). If f = 2, for example, the velocity of 
the second pore group is twice as fast as the first and the velocity of the third is twice as 
fast as the second and so on. If f = 3, then the velocity of the second pore group is three 
times faster than the first, etc (e.g., see Figs 1 and 2). Any soil may be simulated by 
selecting values for f and N. 



Macropore Flow 
 
The number of pore-groups, 
their limiting moisture 
contents and flux, can be 
linked to physically 
measurable parameters such as 
soil type and hydraulic 
conductivity. Any number of 
additional pore-groups 
representing flow through 
macropores and subsurface 
channels  can be added to the 
model. The transport of 
moisture in macroporous 
groups is catered for in the 
same manner to the other 
pore-groups, i.e. by defining 
transport coefficients which 
are a simple integer multiple 
of the velocity of moisture in 
the slowest pore group.  

 
 

 
 
Figure 2. Piece-wise approximation to the unsaturated 
hydraulic conductivity function. Used to simulate pore-groups 
in the soil layer.  
 
 
 
 

 
 γp = υ  / p υ1    for   p = N+1, N+2 .. T (17) 

 
and where in this case, γp  represents how much faster moisture in the pth macropore 
group travels compared to moisture travelling in the slowest moving pore-group (p = 1). 
Although, in principle, any number of macropore groups can be modelled in this way, in 
practice it is hard to justify selecting any more than one macropore group without 
experimental evidence.  
 
 
Solute Concentration 
 
The solute concentration, c(x,t), in the soil is given by 
 
 c(x,t) = 

s(x,t)
θ  (18) (x,t)

 
where s(x,t) is the total solute load given by 
 

 s(x,t) = ∑
p=0

T

  (19) 
s p

(i,j)



 
and sp is the solute mass in pore-group p. Assuming, for the moment, that chemical 
processes like adsorption and solute precipitation are negligible, then the solute flux may 
be simply written as  
 
         s   

p
(i,j) = sp

(i – δp γp, j – 1) + ψp
(i,j)  (20) 

 
where ψ is the solute amount added to or subtracted from the pth group during ∆ . 
In each time step the concentration of solutes in each group is affected by three 
processes: evapotranspiration (moisture extracted from the soil), precipitation (moisture 
entering the soil after infiltrating the soil surface) and mixing or interchange between 
capillary-bundles in order to attain chemical equilibrium. These three processes 
determine the value of ψ . Each process is described below. In the first step, moisture 
is extracted from each capillary-bundle or pore-group in the soil in various amounts as a 
result of evapotranspiration. Evapotranspiration also helps to redistribute moisture and 
consequently solutes between groups. Let  represent the evapotranspiration loss 
from the soil at time j and depth i. Since this loss does not have to be uniform with depth 
nor with respect to the capillary bundle,  let 

  
p
(i,j) t / γp

  
p
(i,j)

E(i,j)

ξp  represent the fraction of the total loss that 
was taken from group p during ∆t / γp . If θ  represents the moisture content just prior 
to accounting for evapotranspiration in the model, then the new moisture content after 
subtracting the evapotranspiration loss for the pth group is given by 

 
p
(i,j)

 
    θ

  
p(E)
(i,j) = θp

(i,j) – ξp
E(i,j)

D
; for 0 ≤ ξp ≤ θp

(i,j) D / E(i,j)  (21) 

 
where D is the depth to the root zone and the subscript E represents the new moisture 
content after evapotranspiration has been accounted for in the time step, j. Although the 
concentration is affected, the amount of solutes remains unchanged. 
 
In the second step, the net precipitation (precipitation less interception) is distributed in 
the soil to the various capillary-bundles. Exactly how this distribution occurs in the soil is 
a complex process and depends on the infiltration rate and the moisture status of the soil. 
Since this distribution is often non-uniform, let  µp  represent the fraction of the total 
precipitation that is added to the pth group following rain. Therefore,  
 

 
  

θp(ER)

(i,j) = θp(E)

(i,j) + µp
P(i,j)

D
; for 0 ≤ µp ≤ ∆Mp – θp(E)

(i,j) D / P(i,j)  (22) 

 
where P  is the amount of precipitation at (i,j) and the subscript (ER) represents the 
new moisture content after accounting for evapotranspiration and precipitation. Let  

be the concentration of solute in the precipitation and let s

 ( i, j)

 CR
( i, j)

p
(i,j) be the amount of 

solute in the group just prior to rain.  Therefore, the amount of solute in the soil after rain 
is 
 



   
sp(ER)

(i,j) = sp
(i,j) + µp

P(i,j)

D
(∆t / γT) CR

(i,j)  (23) 

 
where s

(ER
 

p )

(i,j)  represents the amount of solutes in the pth pore-group after accounting for 
precipitation.  
 
The network of flow paths in the soil are interconnected. Therefore, in the final step, 
there is an exchange of moisture and solutes between the various capillary-bundles 
ranging from complete exchange of moisture and solutes to no exchange or mixing. 
Mathematically, this behaviour might be described by three strategies (a) complete 
mixing, (b) partial mixing, and (c) no exchange between pore-groups within the 
simulated time interval. These three strategies covering the continuum of possible 
behaviour should be implemented within the model. For example, under option (b), an 
appropriate partial mixing strategy might be one in which a substantial portion of the 
moisture and solutes in the slower pore-groups are exchanged within the time interval 
whereas for faster moving pore-groups or macropore groups, very little exchange occurs 
in the simulated time step (Skopp, Gardner & Tyler, 1981).  
 
All strategies can be modelled easily by defining two sets of coefficients,   λ (  θ ) and 

 (   θ ). Let   λ  represent the fraction of moisture extracted from group p and placed into 
a “common” pool (0 ≤    ≤ 1), and let 

p p
 ηp p p

λp  ηp  represent the fraction of the “common” pool 
that is moved back into the pth group after mixing. After mixing, the new moisture 
content will be given by 

  (24) 
  

θp(ERM)

(i,j) = (1 – λp) θp(ER)

(i,j) + ηp λg θp(ER)

(i,j)Σ
g = 0

T

 
The values for the mixing coefficients  λp

 and  ηp
 depend on the soil type and would 

normally have to be found by careful experimentation. In a similar fashion, after mixing 
is accounted for, we have 
 

  (25) 
  

sp(ERM)

(i,j) = (1 – λp) sp(ER)

(i,j) + η p λg sp(ER)

(i,j)Σ
g = 0

T

 
where 

(ERM)
 is the amount of solutes in group p after the mixing process has been 

accounted for and is equivalent to the right hand side of eq. (20) after the processes of 
evapotranspiration, precipitation and chemical mixing and interchange have been 
accounted for. There are certain conditions and restrictions on the range of values that the 
mixing coefficients can have. These are fairly obvious and result from consideration of 
the conservation of mass. In particular, if a set of coefficients for   

 sp
(i,j)

λp  are adopted for a 
particular mixing strategy, then the values for  ηp  will be determined at each time step 
and depend on the amount of moisture in the pore group, the capacity of the pore-group 
to store additional moisture and the value of  λp . Eqs (24) and (25) are bound by the 
following conditions 



 

 
  

η pΣp = 0

T
= 1 ; and ηp ≤ ∆Mp – (1 – λp) θ(ER)p

(i,j) / λg θ(ER)g
(i,j)Σ

g = 0

T
 (26) 

 
Clearly, any number of mixing strategies can be adopted depending on the values for  λp . 
For example, no mixing can be implemented by taking  λp = 0 for all p. Partial mixing is 
simulated when 0 <   λ < 1 and full mixing occurs when  p λp = 1 for all p. A partial mixing 
strategy which tends to move moisture (and solutes) from pore-groups with small 
available moisture capacities (i.e., small ∆Mp ) to groups with larger moisture capacities 
is given by 
 

 
  

ηp = ∆Mp – (1 – λp) θ(ER)p
(i,j) / ∆Mg – (1 – λg) θ(ER)g

(i,j)Σ
g = 0

T
 (27) 
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Figures 3a and 24b. Influence of different mixing 
percentages on the breakthrough curves for a simulated soil 
column. 
 

Other strategies were suggested 
by Stagnitti, et al., (1991). Fig. 
3a and 3b illustrate the effects 
that different mixing strategies 
have on the breakthrough curves 
for a simulated soil column. For 
each simulation, the values for 

 λp  are the same for each pore 
group (eg. 2% per time step for 
all pore groups). Thus at the end 
of each time step, the 
concentration in each individual 
capillary-bundle or pore-group is  
 

    
 (28) cp

(i,j) = sp(ERM)

(i,j) / θp(ERM)

(i,j)

 
 
Comparison With The 
Convection - Dispersion 
Equation 
 
Fig. 3 shows that the preferential 
flow model behaves like a 
Convection-Dispersion model 
when complete mixing is 
adopted and like a capillary-
bundle model when no mixing is 
adopted. The breakthrough 

 



curves were obtained for a hypothetical soil column by a applying an instantaneous 
concentration of solute under steady-state flow conditions.   
 
 
Hydrodynamic dispersion coefficients were fitted to the simulated breakthrough curves 
using CXT-FIT from Parker and van Genuchten (1984). Not surprisingly, the preferential 
flow model was found to behave very much like the Convection-Dispersion equation 
when saturated flow conditions and 100% mixing in all pore groups was adopted. Even 
under unsaturated flow conditions, the dispersion coefficient calculated using the input 
parameters from the preferential flow model was highly correlated with the fitted 
coefficients from CXT-FIT. Fig. 4 illustrates the relationship between the mixing 
coefficient,    expressed and the fitted hydrodynamic dispersion coefficient for the 
Convection-Dispersion equation for a simulated soil column with an instantaneous 
concentration of solute under steady-state flow. Clearly, as expected, the mixing 
coefficients are inversely proportional to the hydrodynamic dispersion. Thus the 
Preferential Flow Model with the simple mixing strategies outlined above may be 
considered as an extension to the Convection-Dispersion equation. 

λp

 
Applications Of The Preferential Flow Model To Field And Laboratory Experiments 
 
Application of the Preferential Flow Model to three different experiments is now 
illustrated. The first is a hillslope experiment conducted at the Cornell University’s 
Turkey Hill Research Site near Ithaca, New York (Steenhuis and Muck, 1988). The plot 
is 23 m wide and 109 m long with an area of about 0.25 ha. The soil is a silt loam with a 
clay pan of compact till at 30 cm depth. The surface slope is a uniform 8%. A hay-grass 
mixture covered the plot. At the 
lower end of the plot both the 
volume and quality of the 
subsurface water and surface water 
were measured. A sprinkler 
irrigation system used water in a 
nearby creek to irrigate the plot. 
The outflow data for an experiment, 
carried out in December of 1978 in 
which nitrate-N and chloride-Cl was 
surface applied to saturated soil, is 
used here. The temperatures during 
this experimental period were just 
above freezing and consequently 
denitrification was extremely small. 
Evapotranspiration was negligible. 
The artificial precipitation averaged 
0.6 cm/h and was maintained for 
over 80 hours. The amount of 
nitrate in the irrigated water was 
negligible but the concentration of 
chloride in the irrigation water 
ranged from 14 mg/l to 16 mg/l. 
Therefore, we took the initial 
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Figure 4. Relationship between the mixing 
coefficients for the Preferential Flow Model (lp) 
and the hydrodynamic dispersion coefficients 
obtained from CXT-FIT for a hypothetical soil 
column with and instantaneous application of 
solutes under steady state flow. 
 



concentration of nitrate to be zero and that for chloride at 15 mg/l. Before applying the 
chloride and nitrate, steady state drainage conditions were achieved by irrigating for a 24 
hour period. The average measured saturated conductivity was 12 m/d and saturated 
moisture content was 52.5%. A field capacity of 46% was reported by Steenhuis and 
Muck (1980). The residual moisture content was 0.0%.  
 
The mathematical formulation presented in this paper was developed for vertical 
percolation through the soil. However, Stagnitti, et al., (1991) demonstrated that with 
very little modification to the mathematical formulation presented here, the preferential 
flow model could also be applied to hillslope experiments. The major changes to the 
model include modifying the flux for downslope transport and incorporation of surface 
runoff. The reader is referred to that paper for further details. The applied solutes were 
only added initially to the macropore and surface runoff groups and then allowed to mix 
slowly into the micropores and immobile pore-groups as experimental measurements 
indicated that when the chemicals were surface applied to the saturated soil, the 
chemicals did not mix readily with the immobile water (Richard and Steenhuis, 1988). 
For this experiment, we adopted the following: f = 2 and N = 2 (i.e., two mobile pore 
groups and one immobile group). We added two additional pore groups, one for surface 
runoff and the other a macropore group. The upper and lower moisture limiting values for 
the immobile pore group were 0 and 0.352 and for the mobile pore groups, they were (1) 
0.353 and 0.485, and (2) 0.486 and 0.525. The upper and lower limiting moisture 
contents for the macropore group were 0.525 and 0.675 respectively. If the local moisture 
content after accounting for precipitation exceeded 0.675 at any time, then the additional 
moisture was added to the surface runoff group. We also adopted an initial moisture 
profile which is consistent with steady-state drainage with an irrigation rate of 0.6 cm/h. 
Water and solutes in the surface runoff moved at a rate 32 times faster than the slowest 
moving group. Therefore,   γp

 1

 equalled 1, 2, 4 and 32, respectively. The small time step 
was a quarter of an hour. This was similar to the time period in which measurements 
were taken. Therefore, ∆   = 1.52 m. How much of the solutes should be blended per 
time step? There is no a priori method of determining this. Four possibilities for λp. The 
first was no mixing, i.e., λp = 0% for all p. In subsequent trials we took 2%, 5% and 10% 
solutes blended per quarter hour per group. 

 x

 



In each case, values for  η  were 
chosen to conserve mass (see 
Stagnitti, et al., (1991) for further 
details). The case for 2% gave the 
best fit and is presented in Fig. 5. 
The predicted solute loss for both 
chloride and nitrate is in very good 
agreement with the observed loss. It 
is indeed remarkable that the one set 
of parameters fit both data sets 
extremely well. However, this 
experiment alone may not be very 
convincing given the number of 
degrees of freedom the model has 
for parameter estimation. The 
following two sets of laboratory 
experiments further illustrates the 
applicability of the model but in 
these cases the range of values that 
the parameters may adopt is much 

narrower. The second example of the application of the model is illustrated in Fig. 6. The 
Preferential Flow Model was applied to a series of experiments conducted on undisturbed 
soil cores by Anderson and Bouma in 1977. Anderson and Bouma (1977a and b) 
conducted a series of laboratory experiments to determine the dispersion coefficients for 
soils consisting of blocky and coarse prismatic structures. In these experiments, three 
similar columns were subject to four different flow treatments using chloride as a tracer. 
Each soil core was 10 cm in diameter and the length ranged from 43 to 52 cm. Three 
replications of each experiment were studied. The first two experiments examined 
saturated flow conditions. The columns were initially saturated with water and then a 300 
ppm solution of potassium chloride was ponded on the top of each column at shallow 
depth (Experiment 1). After the effluent concentration reached the input concentration, 
the columns were then flushed with water and drained leaving the larger pores filled with 
air. Another continuous dose of 300 ppm of chloride concentration was applied by 
ponding (Experiment 2). This was then followed by another flushing and draining and 
then a pulse application of 1 cm per day irrigation by ponding (Experiment 3). The final 
experiment consisted of ponding water on a gypsum crust giving a steady, continuous 
infiltration of approximately 1 cm/d (Experiment 4). Steenhuis, et al., (1991) and Nijssen, 
et al., (1991) analysed these experiments by conducting two simulations. For the first 
simulation, N = 7 (i.e., seven mobile pore groups) and f = 2. The velocity   of the 
slowest moving group was 1.85 cm/d and the fastest pore-group was 118.6 cm/d. The 
simulation time step was 3 minutes and solutes were blended at the following rates λp = 
0, 0.1, 0.15, 0.5, 0.75, 1.5, 1.75, and 2.0 % per 3 minutes. Although the mixing 
coefficients were large for the larger pore-groups, the overall mixing in the small pores is 
greater due to the longer retention time of solutes in those pores. In the second 
simulation, only the shape of the hydraulic conductivity function was modified by 
making the fastest moving pore-group transport water and solutes at a rate 256 times 
faster than the slowest moving pore-group rather than 64 times as in simulation 1 (i.e., a 
factor of 4) and thus enhancing macroporous flow. All other parameters remained 
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Figure 5. Predicted solute loss (broken lines) using the 
preferential flow model plotted with observed loss (solid 
lines) for application of chloride (squares) and nitrate 
(crosses).  
 



unaltered. The predicted breakthrough curves for the two simulations plotted with the 
observed breakthrough curves are presented for each of the four experiments in Fig. 27.  
 
The range of values for the observed breakthrough curves provides an indication of the 
experimental variation between the columns. In all cases, except for Experiment 2, the 
predicted breakthrough curves for both simulations fell within the range of observed 
values. For Experiment 3, the predicted pulse application showed large variation within a 
day. These were not observed in the original data set because the concentrations were 
only measured daily whereas our model simulations were conducted on a 3-minute 
interval. If we averaged our predicted concentrations on a daily basis a very similar 
breakthrough curve would result. The second experiment clearly shows the significant 
effect of macropore flow on the breakthrough curve. The almost instantaneous response 
in the effluent concentration was attributed by Anderson and Bouma to flow through the 
larger air-filled pores. Our second simulation which enhanced the effect of the macropore 
flow more closely matched the observed values than the first simulation. It is very 
difficult to match the breakthrough curves for Experiments 1 and 2 with the same 
hydraulic conductivity function. It is likely that different conductivity functions for 
drained columns and saturated columns should be applied due to swelling of the soil and 
consequent narrowing of the cracks and voids (Steenhuis, et al., 1991). The model, 
however, was able to simulate a wide variety of breakthrough curves without changing 
other physical properties of the soil. In contrast, Anderson and Bouma tried to fit 
dispersion coefficients to the experiments using the Convection-Dispersion equation but 
found that the coefficients varied considerably and were highly dependent on the flow 
regime. 
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Figure 6. Predicted and observed breakthrough curves for the Anderson and Bouma, 1977a and 1977b 
data. The solid lines represent model predictions for the second simulation and the dashed lines represent 
model predictions for the first simulation. The symbols (squares, pluses and astricts) represent the observed 
data for three different replications (soil columns).  
 
 
In more recent experiments conducted by Kluitenberg and Horton (1990), three 
undisturbed soil cores containing macropores were taken from the A horizon of a glacial-
till comprising of a fine loam mix. Each column had a diameter of 18 cm and lengths of 
33, 33 and 35 cm.  Labelled A, B and C, the columns had saturated hydraulic 
conductivities ranging from 58, 28 to 12 cm/h respectively and an average saturated 
moisture content of 0.44.  At the beginning of the experiment, all columns were saturated 
for a 12 h period with a 0.01 N solution of calcium sulphate solution. Then, a 0.05 N 
solution of calcium chloride solution was ponded with a constant head on each column 
(Experiment 1). After about two pore volumes of this solution had infiltrated, the 
columns were extensively leached with the 0.01 N solution of calcium sulphate solution 
and then allowed to drain for a further 12 hour period. Next, 200 ml of a 0.05 N solution 
of calcium chloride solution was applied to the surface as a pulse (Experiment 2).  
 
Once this solution had infiltrated, a 0.01 N solution of calcium sulphate solution was 
ponded on the surface and leached and drained once more. Then, an application of a 0.25 
N solution of calcium chloride solution was dripped on the surface during a 6 to 8 minute 



interval during which no ponding occurred (Experiment 3). After 15 minutes, the 
columns were again ponded with the calcium sulphate solution. 
 
For these experiments, four mobile pore-groups and an immobile pore group were 
selected and the velocities of solute and moisture flow for the mobile pore groups were 
19.5, 39.1, 78.1 and 1250 cm/h respectively; the latter representing macroporous 
transport (see Table 1). The “small” time step was 1/64 mins. Mixing was facilitated by 
blending approximately 0.8% of solutes in the immobile group and 0.004% of solutes in 
the mobile pore-groups in each time step (Nijssen, et al., 1991). Once again, this strategy 
results in more mixing in the slower moving groups than the faster ones due to the longer 
residence times in the soil. All other input parameters such as flow rates, duration of 
chloride pulse, initial moisture status etc. were determined from the actual data. Figures 
7, 8 and 9 illustrate the simulated and observed breakthrough curves for columns A, B, 
and C. Since Kluitenberg and Horton (1990) observed that air entrapment caused 
variation in the flow rate, the concentrations of the effluent are plotted against pore 
volume. Figures 7a, 8a and 9a show breakthrough curves for each column for the first 
experiment where the chloride was ponded at the surface of the soil for approximately 
two pore volumes. The model reasonably predicts the observed data except for the initial 
breakthrough. The most remarkable feature for the observed and predicted breakthrough 
curves is the difference between the pulse and drip applications (Experiments 2 and 3) 
which are shown in figures 7b, 8b and 9b. For the drip application, the column remained 
unsaturated, whilst for the pulse, the solution was applied in a single slug. The resulting 
breakthrough curves are quite different as one might expect. For all columns, the pulse 
application resulted in a sharp, early peak whilst for the drip experiment, the 
breakthroughs were smaller and the peak arrived later. The model, without changing the 
soil and solute properties, was able to predict these differences quite well. Therefore, 
unlike the Convection-Dispersion equation, the model is sensitive to the rate of effluent 
application. 
 

 

       
 
Figure 7.  Predicted (dashed lines) and observed breakthrough (solid lines) curves for column A.   
(a) Ponded Application, and (b) Pulse and Drip Application.  Data from Kluitenberg and Horton (1990). 
 

 
 
 
 



 

 
Figure 8.  Predicted (dashed lines) and observed breakthrough (solid lines) curves for column B.   
(a)  Ponded Application, and (b) Pulse and Drip Application.  Data from Kluitenberg and Horton (1990). 
 
 
 

      
  
Figure 9.  Predicted (dashed lines) and observed breakthrough (solid lines) curves for column C.  
(a)  Ponded Application, and (b) Pulse and Drip Application.  Data from Kluitenberg and Horton (1990). 
 
 
References: 
 
Anderson, J. L., & Bouma, J. (1977).  Water movement through pedal soils: I. Saturated 
flow.  Soil Science of America Proceedings, 37, 408 - 413. 
 
Anderson, J. L., & Bouma, J. (1977).  Water movement through pedal soils: II. 
Unsaturated flow.  Soil Science of America Proceedings, 37, 419 - 423. 
 
Barry, D. A. (1993).  Modelling contaminant transport in subsurface: Theory and 
computer programs.  In H. Ghadiri & C. W. Rose (Ed.), Chapter 3, Modelling Chemical 
Transport in Soils: Natural and Applied Contaminants.   London. Lewis Publishers. 105 -
144. 
 
Barry, D. A., & Li, L. (1994).  Physical basis on nonequilibrium solute transport in soil.  
In 15th International Congress of Soil Science,  Acapulco, Mexico.  20 pp. 



 
Barry, D. A., & Sposito, G. (1988).  Application of the convective-dispersion model to 
solute transport in finite soil columns.  Soil Science Society of America Journal, 52(1), 3 
- 9. 
 
Brooks, R. H., & Corey, A. T. (1964).  Hydraulic properties of porous media.  
Hydrological Papers, No. 3, 27pp. Colorado State University, Fort Collins. 
 
Charbeneau & S Charbeneau, R. J. (1981).  Groundwater contaminant transport with 
adsorption and ion exchange chemistry:  Method of characteristics for the case without 
dispersion.  Water Resources Research, 17, 705 - 713. 
 
Charbeneau, R. J. (1984).  Kinematic models for soil moisture and solute transport.  
Water Resources Research, 20(6), 699 - 706. 
 
Charbeneau, R. J., & Street, R. L. (1979).  Modeling groundwater flow fields containing 
point singularities, streamlines, travel times, and breakthrough curves.  Water Resources 
Research, 15(6), 1445 - 1450. 
 
Gee, Kincaid Gee, G. W., Kincaid, T., Lenhard, R. J., & Simons, C. S. (1991).  Recent 
studies of flow and transport in the vadose zone.  (U. S. National Report of the 
International Union of Geodesy and Geophysics, 1987 - 1900), Reviews of Geophysics, 
29, 227 - 239. 
 
Gerke, H. H., & van Genuchten, M. T. (1993).  A dual-porosity model for simulating 
preferential movement of water and solutes in structured porous media.  Water Resources 
Research, 29, 305 - 319. 
 
Kluitenberg, G. J., & Horton, R. (1990).  Effect of solute application method on 
preferential flow transport of solutes in soil.  Geoderma, 46, 283 - 297. 
 
Li, Y., & Ghodrati, M. (1994).  Preferential transport of nitrate through soil columns 
containing root channels.  Soil Science Society of America Journal, 58, 653 - 659. 
Nijssen, B. M., Steenhuis, T. S., Kluitenberg, G. J., Stagnitti, F., & Parlange, J.-Y. 
(1991).  Moving water and solutes through the soil: Testing of a preferential flow model.  
In National Symposium on Preferential Flow,  Chicago, Illinios.  223 - 232. 
 
Parker, J. C., & van Genuchten, M. T. (1984).  Determining transport parameters from 
laboratory and field tracer experiments.  Bulletin, 84-3. Virginia Agricultural 
Experimental Station, Blacksburg. 
 
Parker, J. C., & van Genuchten, M. T. (1984).  Flux-averaged and volume-averaged 
concentration in continuum approaches to solute transport.  Water Resources Research, 
20(7), 866 - 872. 
 
Parlange, J.-Y., Steenhuis, T. S., & Stagnitti, F. (1995).  Percolation.  In C. Finkl (Ed.), 
The Encyclopedia of Soil Science and Technology.   Van Nostrand Reinhold.  
 



Richard, T. L., & Steenhuis, T. S. (1988).  Tile drain sampling of preferential flow on a 
field scale.  Rapid and Far Reaching Hydrologic Processes in the Vadose Zone (Special 
Issue), Journal of Contaminant Hydrology, 3, 307 - 325. 
 
Richards, L. A. (1931).  Capillary conduction of liquids through porous mediums.  
Physics, 1, 318 - 333. 
 
Skopp, J., Gardner, W. R., & Tyler, E. J. (1981).  Two-region model with small 
interaction.  Soil Science Society of America Journal, 45, 1147 - 1152. 
 
Sposito, G., & Jury, W. A. (1988).  The lifetime  probability density function for solute 
movement in the subsurface zone.  Journal of Hydrology, 102, 503 - 518. 
 
Stagnitti, F., Steenhuis, T. S., Parlange, J.-Y., Nijssen, B. M., & Parlange, M. B. (1991).  
Preferential solute and moisture transport in hillslopes.  In Challenges for Sustainable 
Development, Proceedings of International Hydrology and Water Resources Symposium,  
Institution of Engineers, Barton, Australia.  919 - 924. 
 
Steenhuis, T. S., & Muck, R. E. (1988).  Preferred movement of non-adsorbed chemicals 
on wet, shallow, sloping soils.  Journal of Environmental Quality, 17, 376 -384. 
 
Steenhuis, T. S., Nijssen, B. M., Stagnitti, F., & Parlange, J.-Y. (1991).  Preferential 
solute movement in structured soil: Theory and application.  In Challenges for 
Sustainable Development, Proceedings International Hydrology and Water Resources 
Symposium,  Perth. Institute of Engineers, Australia. 3,  925 - 931. 
 
Steenhuis, T. S., Parlange, J.-Y., & Andreini, M. S. (1990).  A numerical model for 
preferential solute movement in structured soils.  Geoderma, 46, 193 - 208. 
 
van der Molen, W. H. (1956).  Desalinisation of saline soils as a column process.  Soil 
Science, 81, 19 - 27. 
 


